Structure Reports

Online
ISSN 1600-5368

David G. Billing, Charles B. de Koning, Joseph P. Michael* and Ibrahim Yillah

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa

Correspondence e-mail:
jmichael@chem.wits.ac.za

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.104$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-(p-Tolylsulfonyl)propan-2-one

The asymmetric unit of the title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$, contains two independent molecules having different conformations. In one conformation, the aromatic ring and the acetyl substituent are gauche to each other, while in the other they are anti.

Comment

The title compound (I), prepared from chloroacetone and sodium p-toluenesulfinate, undergoes condensations with aldehydes in the presence of base (Mélot et al., 1988; Roche et al., 1998; Swenson et al., 2002). Condensations with other electrophiles have not been reported, although simple basemediated alkylations are known (Sato et al., 1981; Shono et al., 1988). We have used (I) in base-induced condensations with cyclic methylthioiminium salts to give vinylogous sulfonamides (Michael et al., 2004). This type of intermediate is a precursor for bicyclic products, which were prepared as models in ongoing studies aimed at the total synthesis of indolizidine alkaloids (Michael et al., 1999, 2005).

(I)

The title compound crystallizes with two independent molecules in the asymmetric unit. These two molecules, labelled A and A^{\prime}, have different conformations (Fig. 1). In molecule A, the aromatic ring and the acetyl group are gauche to each other, with a torsion angle of $-54.9(2)^{\circ}$ for the $\mathrm{C} 2-$ $\mathrm{C} 3-\mathrm{S} 1-\mathrm{C} 4$ segment. In addition, dipolar interactions between the carbonyl group and the $\mathrm{S}=\mathrm{O}$ bonds of the sulfone appear to be minimized, since the $\mathrm{C}=\mathrm{O}$ bond effectively points in the opposite direction to the resultant dipole of the two $\mathrm{S}=\mathrm{O}$ bonds. In molecule A^{\prime}, by contrast, the aromatic ring and the acetyl group are anti to each other, the corresponding torsion angle being $-173.97(18)^{\circ}$. In this molecule, the carbonyl group lies parallel to the $\mathrm{S}^{\prime}=\mathrm{O} 3^{\prime}$ bond, and their dipoles point in the same direction. The carbon-oxygen ($\mathrm{C} 2^{\prime}=\mathrm{O} 1^{\prime}$) bond length of 1.201 (3) \AA and the adjacent $\mathrm{C}^{\prime}-$ C3' bond length of 1.526 (3) \AA indicate that the former is a typical carbonyl double bond while the latter is clearly a single
bond, ruling out the hypothesis that the second conformation is a result of enolization of the ketone and subsequent formation of an intramolecular hydrogen bond of the type $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}_{2} \mathrm{~S}$.

Experimental

A mixture of sodium p-toluenesulfinate $(5.00 \mathrm{~g}, 28.0 \mathrm{mmol})$ and chloroacetone ($2.59 \mathrm{~g}, 28.0 \mathrm{mmol}$) in dimethyl sulfoxide (12.5 ml) was heated on a water bath at 363 K for 4 h . The light-brown reaction mixture was diluted with water (50 ml) and extracted with dichloromethane ($3 \times 30 \mathrm{ml}$). The organic fractions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel with ethyl acetate-hexane (1:1) as eluting solvent gave (I) as a yellow solid [yield 5.83 g , 98%; m.p. $323-324 \mathrm{~K}$; literature m.p. 323-324.5 K (Crandall \& Pradat, 1985)]. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78(2 \mathrm{H}, d, J=8.2 \mathrm{~Hz}, 5-\mathrm{H}$ and $9-\mathrm{H}), 7.38(2 \mathrm{H}$, $d, J=8.2 \mathrm{~Hz}, 6-\mathrm{H}$ and $8-\mathrm{H}), 4.17\left(2 \mathrm{H}, s, \mathrm{CH}_{2}\right), 2.44\left(3 \mathrm{H}, s, \mathrm{ArCH}_{3}\right)$ $2.37\left(3 \mathrm{H}, s, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.01(\mathrm{C}=\mathrm{O})$, 145.29 (C7), 137.57 (C4), 129.82 and 128.00 (C5, C6, C8, C9), 67.54 $\left(\mathrm{CH}_{2}\right), 31.26\left(\mathrm{COCH}_{3}\right), 21.47\left(\mathrm{ArCH}_{3}\right)$. Crystals suitable for X-ray crystallography were obtained as colourless plates by slow evaporation of a diethyl ether solution.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S} \\
& M_{r}=212.26 \\
& \text { Monoclinic, } P 2_{1} \\
& a=14.5381(16) \AA \\
& b=5.5394(6) \AA \\
& c=14.6899(16) \AA \\
& \beta=114.998(2))^{\circ} \\
& V=1072.0(2) \AA^{3}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.891, T_{\text {max }}=0.967$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.104$
$S=1.03$
4419 reflections
258 parameters
H -atom parameters constrained

$Z=4$

$D_{x}=1.315 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Cut plate, colourless
$0.4 \times 0.4 \times 0.12 \mathrm{~mm}$

7547 measured reflections
4419 independent reflections
3580 reflections with $I>2 \sigma(I)$)
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=28.3^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0638 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.024 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1467 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.03(7)
\end{aligned}
$$

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with $\mathrm{C}-\mathrm{H}$ bond lengths of 0.93 (aromatic CH), $0.96\left(\mathrm{CH}_{3}\right)$ or $0.97 \AA\left(\mathrm{CH}_{2}\right)$, with $U_{\text {iso }}(\mathrm{H}) 1.2(\mathrm{CH}$ and $\left.\mathrm{CH}_{2}\right)$ or $1.5\left(\mathrm{CH}_{3}\right)$ times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: XPREP (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997);

Figure 1
The molecular structures of the two independent molecules A (left) and A^{\prime} (right) in the asymmetric unit of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

This work was supported by grants from the National Research Foundation, Pretoria (NRF, GUN 2053652) and the University of the Witwatersrand.

References

Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus. Version 6.02 (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
Crandall, J. K. \& Pradat, C. (1985). J. Org. Chem. 50, 1327-1329.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Mélot, J. M., Texier-Boullet, F. \& Foucaud, A. (1988). Tetrahedron, 44, 22152224.

Michael, J. P., de Koning, C. B., Gravestock, D., Hosken, G. D., Howard, A. S., Jungmann, C. M., Krause, R. W. M., Parsons, A. S., Pelly, S. C. \& Stanbury, T. V. (1999). Pure Appl. Chem. 71, 979-988.

Michael, J. P., de Koning, C. B., Malefetse, T. J. \& Yillah, I. (2004). Org. Biomol. Chem. 2, 3510-3517.
Michael, J. P., de Koning, C. B. \& van der Westhuyzen, C. W. (2005). Org. Biomol. Chem. 3, 836-847.
Roche, D., Force, L., Carpy, A., Gardette, D. \& Madesclaire, M. (1998). J. Mol. Struct. 447, 135-140.
Sato, K., Inoue, S. \& Sakamoto, T. (1981). Synthesis, pp. 796-798.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Shono, T., Kashimura, S., Sawamura, M. \& Soejima, T. (1988). J. Org. Chem. 53, 907-910.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Swenson, R. E., Sowin, T. J. \& Zhang, H. Q. (2002). J. Org. Chem. 67, 91829185.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

